Boosting Graph Pooling with Persistent Homology

Chaolong Ying

Supervisor: Prof. Tianshu Yu

March 22, 2025

1/26



Table of Contents

1. Introduction

2/26



Graph-level Tasks

¢ Graph-level classification/prediction: Make prediction using all the node

embeddings in a graph

I] [I Graph-level prediction
» | R .
! %‘ : :

[

e Applications:

1.

Molecular Property Prediction (Predicting whether a molecule has a specific biological
activity, e.g., toxicity, solubility)
Social Network Analysis (ldentifying types of communities in social networks, e.g.

question/answer-based community or a discussion-based community)

3/26



Global Pooling

® Global Mean/Max/Sum Pooling to aggregate the message from each node

‘ (2) Aggregation

QY mm @ (1) Message

yG = Mean/Max/Sum({h, € R Vv € G})

4/26



Issue of Global Pooling

e |ssue: Global pooling over a (large) graph will lose information
® Toy example: we use 1-dim node embeddings

e Node embeddings for G; : {—1,-2,0,1,2}

e Node embeddings for G, : {—10,—20,0, 10,20}

e Clearly G; and G; have very different node embeddings
e If we do global sum pooling:

e Prediction for Gy : yg, = Sum({-1,-2,0,1,2}) =0

e Prediction for G, : yg, = Sum({-10,-20,0,10,20}) =0

e We cannot differentiate G; and G;

5/26



Hierarchical Graph Pooling

e A solution: Aggregate all the node embeddings hierarchically

® Toy example: We will aggregate via ReLU(Sum(-)). We first separately aggregate
the first 2 nodes and last 3 nodes, and then aggregate again to make the final
prediction.

® G; node embeddings {—1,—2,0,1,2}

e Round 1: y, = ReLU(Sum({—1,-2})) = 0, y, = ReLU(Sum({0,1,2})) = 3
e Round 2: yc = ReLU(Sum({ya, y»})) =3

® Gy node embeddings {—10, —20,0, 10,20}

e Round 1: y, = ReLU(Sum({—10, -20})) = 0, y», = ReLU(Sum({0, 10,20})) = 30
e Round 2: yc = ReLU(Sum({ya, y»})) = 30

® Now we can differentiate G; and G>

6/26



Hierarchical Graph Pooling in Practice

Original Pooled network Pooled network Pooled network Graph
network at level 1 at level 2 at level 3 classification

®
..\%.w.
ol,}"o”“o

® Leverage 2 independent Graph Neural Networks (GNNs) at each level.

® Use clustering assignments from GNN B to aggregate node embeddings generated by
GNN A.

e Create a single new node for each cluster, maintaining edges between clusters to

generated a new pooled network 7/26



Formulations of Hierarchical Graph Pooling

Graph Pooling (GP) can be formulated as G — Gp = (Vp, Ep) such that the number of
nodes |Vp| < |V|. Typical methods DiffPool [Ying et al., 2018],
MinCutPool [Bianchi et al., 2020], DMoNPool [Tsitsulin et al., 2023] rely on learning a

soft cluster assignment S(/) € RM-1xm:
S() = softmax (GNNS() (A<’—1), x(’—1>)) . (1)
Subsequently, the coarsened adjacency matrix at the /-th pooling layer is calculated as
Al = sHTAU-1)g(), (2)
and the corresponding node representations are calculated as
X = sOTGNNY) (A(’—l), x(’—l)) . (3)

These approaches differ from each other in the way to produce S, which is used to inject

a bias in the formation of clusters.
8/26



Betti Numbers on Graphs

For a graph G with n nodes and m edges
® 5o: number of connected components
® 31: number of cycles

we have

Br=m+Bo—n

Intuition
The addition of a single edge to G will change its Betti numbers, either by merging two
connected components (thus decreasing ) or by creating an additional cycle (thus

increasing (31).

9/26



Persistent Homology

® Given a graph G = (V, E), the expressivity of Betti numbers can be increased when
paired with a scalar-valued filtration function over nodes f : V — R or edges
f:E—R

® Since f can only attain a finite number of values ag, a1, a2, ... on the graph, this
permits calculating a graph filtration ) € Gy C Gy ... C Gx_1 C Gx = G, where each
Gi == (Vi, Ej), with V; :={v e V| f(v) < a,} and
Ei :={v,w e E | max{f(v),f(w)} < a;}.

® This sublevel set filtration permits tracking topological features, such as cycles, via

persistent homology, representing each one by a creation and destruction value
(F0, F0) € R?, with i < j.

10/26



Persistent Homology

Example

. 3
TR
13 ac  g@  q®

O-dimensional: (1, o), (1, 3), (2, 3), (3, 3), (3, 3)

1-dimensional: (3, o)

11/26



Table of Contents

2. Motivation

12/26



Empirical Observations

Origina DiffPool MinCutPool DMoNPool

ENZYMES
b

NCIL

PROTEINS

Figure: Visualization of graphs pooled with different methods.

13/26



Motivation

Motivated by Topological autoencoders [Moor et al., 2020], we propose to preserve

topological structures in the pooling process.

TN
-

/ pe
fom / <
famzero

persistence/

°

S

s
\

\

——NCII
——=NCI109
PROTEINS

=]
E
5]
_ Graph /_\ / _Graph é 3
]
“pooling ", “pooling 5o
.2
%
2
o
o~

Destructtion
persistence

0.1 0.2 03 0.4 05 0.6 0.7 08 09 1
Pooling ratio

b os ——ENZYMES
Q{ Pesistncs Persistence IMDB-BINARY
0 nlreun nne.m 0.4
Creation

(a) Persistence diagrams (b) Hierarchical view of GP and PH  (c) Alignment of GP and PH

Figure: Illustration of Graph Pooling (GP) and Persistent Homology (PH). (a) Illustration of persistence
diagrams. (b) GP and PH share a similar hierarchical fashion by coarsening a graph. (c) As a motivating
experiment, we gradually change pooling ratio and count how persistence ratio (ratio of non-zero

persistence) changes with it. 14 /26



Table of Contents

3. Methods

15/26



Empirical Observations

Issues in existing graph pooling methods: In DiffPool, the edge weights may span a wide range

due to the involvement of multiple multiplications in their generation, which hinders the stability
and generalization power of the subsequent message passing layers in GNNs. In MinCutPool and
DMoNPool, the edge weights are normalized by degree to mitigate numerical explosion. However,

this normalization leads to the edge weights becoming excessively smooth and lacking sparsity

Layer 1

DiffPool

Layer 2
|

g &5 o 8

‘10

MinCutPool

00

DMoNPool

16 /26



Resampling

To solve the issue, we resample the coarsened adjacency A() obtained from a normal
graph pooling layer (Eq. 2) as:

) — min(A®
A0 = resample ( A min(A™) ) ,

max(A() — min(AM)

where AU) is first normalized in the range of [0, 1], and resample(-) is performed

independently for each matrix entry using the Gumbel-softmax trick.

17/26



Persistence Injection

Now A’() € {0,1}"*M is a sparse matrix without edge features so we can easily inject
topological information into it. For a resampled graph with A’) and X(), we formulate

the persistence injection as:

D1 = ph(A'") sigmoid(d(XM)))[1]

: / 5
A = A'() o to_dense(D1[1] — D1[0]), ®

where © is the Hadamard product, to_dense() means transforming sparse representations
in terms of edges to dense matrix representations, D is the augmented 1-dimensional
persistence diagrams, ph is the calculation of persistent homology. Persistence injection

can actually be regarded as a reweighting process.

18/26



Topological Loss Function

® We propose an additional loss function to implicitly guide the graph pooling process.
® We use several transformations (denoted as transform(-)) to convert the tuples in
persistence diagrams into vector h; (t € [1,m]). We calculate the mean vector p as

well as the second-order statistics as the standard deviation vector o as:

h; = transform(D,)

1 & 1 & (6)
M:m;hn o= m;thht—MQM

® To regularize the topological difference between layers, Topological Loss Function is

Lomo= 35 ((16) - (4216))° 7

I=1 i=1

defined as

19/26



Overview of Our Method

©0) x(0)
(AT, X)

GNN
layers

(A/D, X 1)
PD

-
Eq. (6)

Reweight

Surjood juerreaur-A3orodog,

Etopo

l

l

I

I

I

|

|

I

I

I

I

i !
i

l

1

I

H Add Resample
! Self-loops Eq. (5)
I

I

I

! .
| P

l

I

I

|

|

l

I

I

I

(A0, x) i

Figure: Overview of our method. The shaded part is one layer of our proposed Topology-Invariant Pooling
(TIP) [Ying et al., 2024].

20/26



Table of Contents

4. Experiments

21/26



Graph Classification Results

Table: Test accuracy (1) of graph classification on benchmark datasets. A bold value indicates the overall
winner. Gray background indicates that TIP outperforms the base graph pooling methods.

Datasets

Methods

NCI1 NCI109 ENZYMES PROTEINS DD IMDB-BINARY  IMDB-MULTI  OGBG-MOLHIV
GCN 77.81 + 1.50 74.90 + 1.85 32,51 + 3.35 76.65 + 3.14 78.66 + 2.36 74.20 £+ 2.40 53.23 + 3.04 75.04 + 0.84
GIN 80.30 + 1.70 79.66 + 1.55 42.83 + 3.66 77.18 + 3.35 78.05 + 3.60 72.65 + 3.04 53.28 + 3.16 76.03 + 0.84
GraphSAGE 80.85 + 1.25 79.16 + 1.28 39.17 + 3.28 76.67 + 3.05 78.83 + 3.07 76.60 + 2.37 53.46 + 2.39 76.18 + 1.27
TOGL 80.53 + 2.29 78.27 £ 1.39 46.09 + 3.72 78.17 + 2.80 76.10 + 2.24 76.65 + 2.75 53.87 + 2.67 77.21 £1.33
GSN 83.50 + 2.00 79.45 + 1.88 49.50 + 6.54 74.59 + 5.00 73.17 £ 4.17 76.80 + 2.00 52.60 + 3.60 76.06 + 1.74
Graclus 80.82 + 1.27 79.13 £ 1.79 41.44 + 3.46 75.69 + 2.62 74.67 + 2.45 74.45 + 3.29 54.72 £ 2.79 76.81 + 0.70
TopK 79.43 + 3.50 77.96 + 1.58 38.35 + 4.83 76.03 + 2.94 76.97 + 3.94 72.60 = 4.24 53.66 + 2.93 76.28 + 0.67
DiffPool 77.64 + 1.86 76.50 + 2.32 48.34 £ 5.14 78.81 + 3.12 80.27 + 2.51 73.15 + 3.30 54.32 + 2.99 76.60 + 1.04
DiffPool-TIP 83.75 +1.31 81.09 + 1.65 65.05 +4.24 79.86 + 3.12 82.12 +2.53 7640+ 3.13 55.53 +£2.92 77.75 + 1.18
MinCutPool 77.92 + 1.67 75.88 + 2.06 39.83 + 2.63 78.25 + 3.84 79.15 + 3.51 73.80 = 3.54 53.87 + 2.95 75.60 + 0.54
MinCutPool-TIP 80.17 = 1.29 79.48 £ 1.37 46.34 + 3.85 79.73 £ 3.27 80.87 + 2.47 75.20 £+ 2.67 54.47 £ 2.27 77.18 £ 0.83
DMoNPool 78.03 + 1.64 76.62 + 1.94 40.82 +3.68 78.63 + 3.89 79.16 + 3.61 73.50 &+ 3.01 54.07 + 3.08 76.30 + 1.34
DMoNPool-TIP 79.68 + 1.38 78.46 + 1.50 45.84 + 5.32 79.73 + 3.66 81.46 + 2.96 74.25 + 2.93 54.23 + 2.64 76.70 £ 0.62

22 /26



Visualization

Original DiffPool DiffPool-TIP MinCutPool MinCutPool-TIP DMoNPool DMoNPool-TIP TopK Graclus

ENZYMES

NCI1

PROTEINS

Figure: Graphs pooled with different methods in graph classification experiment.

23/26



Training Curves

—— DiffPool-TIP 300 —— DiffPool-TIP
178 DiffPool-TIP-NL DiffPool-TIP-NL
1.50 8 250
IS
21.25 2
5 = 200 |
= 1.00 7 \
° 3 150 \/\\/
0.75 g M
z
0.50 100
0.25 50
0 20 40 60 80 100 120 0 20 40 60 80 100 120
Step Step

Figure: The training curves of DiffPool-TIP and DiffPool-TIP-NL on ENZYMES dataset. We show the

average values and min-max range of objective and Wasserstein distance for multiple runs.

24/26



References

B

Bianchi, F. M., Grattarola, D., and Alippi, C. (2020).
Spectral clustering with graph neural networks for graph pooling.
In International conference on machine learning, pages 874-883. PMLR.

Moor, M., Horn, M., Rieck, B., and Borgwardt, K. (2020).
Topological autoencoders.
In International conference on machine learning, pages 7045-7054. PMLR.

Tsitsulin, A., Palowitch, J., Perozzi, B., and Miiller, E. (2023).

Graph clustering with graph neural networks.

Journal of Machine Learning Research, 24(127):1-21.

Ying, C., Zhao, X., and Yu, T. (2024).

Boosting graph pooling with persistent homology.

In Advances in Neural Information Processing Systems, volume 37, pages 19087-19113.
Ying, Z., You, J., Morris, C., Ren, X., Hamilton, W., and Leskovec, J. (2018).
Hierarchical graph representation learning with differentiable pooling.

In Advances in neural information processing systems, volume 31.

25 /26



The End



	Introduction
	Motivation
	Methods
	Experiments

